|
1.
|
|
Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: ·Stronger focus on MCMC·Revision of the computational advice in Part III·New chapters on nonlinear models and decision analysis·Several additional applied examples from the authors' recent research·Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more·Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life....
|
2.
|
|
Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: http://www.stat.columbia.edu/~gelman/arm/ ...
|
3.
|
|
On the night of the 2000 presidential election, Americans watched on television as polling results divided the nation's map into red and blue states. Since then the color divide has become symbolic of a culture war that thrives on stereotypes--pickup-driving red-state Republicans who vote based on God, guns, and gays; and elitist blue-state Democrats woefully out of touch with heartland values. With wit and prodigious number crunching, Andrew Gelman debunks these and other political myths. This expanded edition includes new data and easy-to-read graphics explaining the 2008 election. Red State, Blue State, Rich State, Poor State is a must-read for anyone seeking to make sense of today's fractured political landscape. ...
|
|